Expression of the C-Met/HGF receptor in human breast carcinoma: Correlation with tumor progression

Author(s):  
Lucia Beviglia ◽  
Kentaro Matsumoto ◽  
Ching-Shwun Lin ◽  
Barry L. Ziober ◽  
Randall H. Kramer
2021 ◽  
Vol 22 (4) ◽  
pp. 1918
Author(s):  
Mio Yamaguchi ◽  
Kiyoshi Takagi ◽  
Koki Narita ◽  
Yasuhiro Miki ◽  
Yoshiaki Onodera ◽  
...  

Chemokines secreted from stromal cells have important roles for interactions with carcinoma cells and regulating tumor progression. C-C motif chemokine ligand (CCL) 5 is expressed in various types of stromal cells and associated with tumor progression, interacting with C-C chemokine receptor (CCR) 1, 3 and 5 expressed in tumor cells. However, the expression on CCL5 and its receptors have so far not been well-examined in human breast carcinoma tissues. We therefore immunolocalized CCL5, as well as CCR1, 3 and 5, in 111 human breast carcinoma tissues and correlated them with clinicopathological characteristics. Stromal CCL5 immunoreactivity was significantly correlated with the aggressive phenotype of breast carcinomas. Importantly, this tendency was observed especially in the CCR3-positive group. Furthermore, the risk of recurrence was significantly higher in the patients with breast carcinomas positive for CCL5 and CCR3 but negative for CCR1 and CCR5, as compared with other patients. In summary, the CCL5-CCR3 axis might contribute to a worse prognosis in breast cancer patients, and these findings will contribute to a better understanding of the significance of the CCL5/CCRs axis in breast carcinoma microenvironment.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Rosalba Salcedo ◽  
Maria Lourdes Ponce ◽  
Howard A. Young ◽  
Ken Wasserman ◽  
Jerrold M. Ward ◽  
...  

Abstract Although several CXC chemokines have been shown to induce angiogenesis and play roles in tumor growth, to date, no member of the CC chemokine family has been reported to play a direct role in angiogenesis. Here we report that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), induced chemotaxis of human endothelial cells at nanomolar concentrations. This chemotactic response was inhibited by a monoclonal antibody to MCP-1. MCP-1 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and the matrigel plug assays. As expected, the angiogenic response induced by MCP-1 was accompanied by an inflammatory response. With the use of a rat aortic sprouting assay in the absence of leukocytic infiltrates, we ruled out the possibility that the angiogenic effect of MCP-1 depended on leukocyte products. Moreover, the direct effect of MCP-1 on angiogenesis was consistent with the expression of CCR2, the receptor for MCP-1, on endothelial cells. Assessment of supernatant from a human breast carcinoma cell line demonstrated the production of MCP-1. Treatment of immunodeficient mice bearing human breast carcinoma cells with a neutralizing antibody to MCP-1 resulted in significant increases in survival and inhibition of the growth of lung micrometastases. Taken together, our data indicate that MCP-1 can act as a direct mediator of angiogenesis. As a chemokine that is abundantly produced by some tumors, it can also directly contribute to tumor progression. Therefore, therapy employing antagonists of MCP-1 in combination with other inhibitors of angiogenesis may achieve more comprehensive inhibition of tumor growth.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Rosalba Salcedo ◽  
Maria Lourdes Ponce ◽  
Howard A. Young ◽  
Ken Wasserman ◽  
Jerrold M. Ward ◽  
...  

Although several CXC chemokines have been shown to induce angiogenesis and play roles in tumor growth, to date, no member of the CC chemokine family has been reported to play a direct role in angiogenesis. Here we report that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), induced chemotaxis of human endothelial cells at nanomolar concentrations. This chemotactic response was inhibited by a monoclonal antibody to MCP-1. MCP-1 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and the matrigel plug assays. As expected, the angiogenic response induced by MCP-1 was accompanied by an inflammatory response. With the use of a rat aortic sprouting assay in the absence of leukocytic infiltrates, we ruled out the possibility that the angiogenic effect of MCP-1 depended on leukocyte products. Moreover, the direct effect of MCP-1 on angiogenesis was consistent with the expression of CCR2, the receptor for MCP-1, on endothelial cells. Assessment of supernatant from a human breast carcinoma cell line demonstrated the production of MCP-1. Treatment of immunodeficient mice bearing human breast carcinoma cells with a neutralizing antibody to MCP-1 resulted in significant increases in survival and inhibition of the growth of lung micrometastases. Taken together, our data indicate that MCP-1 can act as a direct mediator of angiogenesis. As a chemokine that is abundantly produced by some tumors, it can also directly contribute to tumor progression. Therefore, therapy employing antagonists of MCP-1 in combination with other inhibitors of angiogenesis may achieve more comprehensive inhibition of tumor growth.


2014 ◽  
Vol 12 (12) ◽  
pp. 1840-1850 ◽  
Author(s):  
Germana Rappa ◽  
Toni M. Green ◽  
Aurelio Lorico

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0157997 ◽  
Author(s):  
Marguerite M. Vantangoli ◽  
Samantha J. Madnick ◽  
Shelby Wilson ◽  
Kim Boekelheide

Sign in / Sign up

Export Citation Format

Share Document